(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
shuffle(Cons(x, xs)) → Cons(x, shuffle(reverse(xs)))
reverse(Cons(x, xs)) → append(reverse(xs), Cons(x, Nil))
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
shuffle(Cons(x, xs)) → Cons(x, shuffle(reverse(xs)))
reverse(Cons(x, xs)) → append(reverse(xs), Cons(x, Nil))
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
shuffle(Cons(x, xs)) → Cons(x, shuffle(reverse(xs)))
reverse(Cons(x, xs)) → append(reverse(xs), Cons(x, Nil))
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
shuffle,
reverse,
appendThey will be analysed ascendingly in the following order:
reverse < shuffle
append < reverse
(6) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
append, shuffle, reverse
They will be analysed ascendingly in the following order:
reverse < shuffle
append < reverse
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append(
gen_Cons:Nil3_0(
n5_0),
gen_Cons:Nil3_0(
b)) →
gen_Cons:Nil3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
append(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) →RΩ(1)
gen_Cons:Nil3_0(b)
Induction Step:
append(gen_Cons:Nil3_0(+(n5_0, 1)), gen_Cons:Nil3_0(b)) →RΩ(1)
Cons(hole_a2_0, append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b))) →IH
Cons(hole_a2_0, gen_Cons:Nil3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
reverse, shuffle
They will be analysed ascendingly in the following order:
reverse < shuffle
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
reverse(
gen_Cons:Nil3_0(
n528_0)) →
gen_Cons:Nil3_0(
n528_0), rt ∈ Ω(1 + n528
0 + n528
02)
Induction Base:
reverse(gen_Cons:Nil3_0(0)) →RΩ(1)
Nil
Induction Step:
reverse(gen_Cons:Nil3_0(+(n528_0, 1))) →RΩ(1)
append(reverse(gen_Cons:Nil3_0(n528_0)), Cons(hole_a2_0, Nil)) →IH
append(gen_Cons:Nil3_0(c529_0), Cons(hole_a2_0, Nil)) →LΩ(1 + n5280)
gen_Cons:Nil3_0(+(n528_0, +(0, 1)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
reverse(gen_Cons:Nil3_0(n528_0)) → gen_Cons:Nil3_0(n528_0), rt ∈ Ω(1 + n5280 + n52802)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
shuffle
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
shuffle(
gen_Cons:Nil3_0(
n766_0)) →
gen_Cons:Nil3_0(
n766_0), rt ∈ Ω(1 + n766
0 + n766
02 + n766
03)
Induction Base:
shuffle(gen_Cons:Nil3_0(0)) →RΩ(1)
Nil
Induction Step:
shuffle(gen_Cons:Nil3_0(+(n766_0, 1))) →RΩ(1)
Cons(hole_a2_0, shuffle(reverse(gen_Cons:Nil3_0(n766_0)))) →LΩ(1 + n7660 + n76602)
Cons(hole_a2_0, shuffle(gen_Cons:Nil3_0(n766_0))) →IH
Cons(hole_a2_0, gen_Cons:Nil3_0(c767_0))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
reverse(gen_Cons:Nil3_0(n528_0)) → gen_Cons:Nil3_0(n528_0), rt ∈ Ω(1 + n5280 + n52802)
shuffle(gen_Cons:Nil3_0(n766_0)) → gen_Cons:Nil3_0(n766_0), rt ∈ Ω(1 + n7660 + n76602 + n76603)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_Cons:Nil3_0(n766_0)) → gen_Cons:Nil3_0(n766_0), rt ∈ Ω(1 + n7660 + n76602 + n76603)
(17) BOUNDS(n^3, INF)
(18) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
reverse(gen_Cons:Nil3_0(n528_0)) → gen_Cons:Nil3_0(n528_0), rt ∈ Ω(1 + n5280 + n52802)
shuffle(gen_Cons:Nil3_0(n766_0)) → gen_Cons:Nil3_0(n766_0), rt ∈ Ω(1 + n7660 + n76602 + n76603)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_Cons:Nil3_0(n766_0)) → gen_Cons:Nil3_0(n766_0), rt ∈ Ω(1 + n7660 + n76602 + n76603)
(20) BOUNDS(n^3, INF)
(21) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
reverse(gen_Cons:Nil3_0(n528_0)) → gen_Cons:Nil3_0(n528_0), rt ∈ Ω(1 + n5280 + n52802)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
reverse(gen_Cons:Nil3_0(n528_0)) → gen_Cons:Nil3_0(n528_0), rt ∈ Ω(1 + n5280 + n52802)
(23) BOUNDS(n^2, INF)
(24) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
x,
xs)) →
Cons(
x,
shuffle(
reverse(
xs)))
reverse(
Cons(
x,
xs)) →
append(
reverse(
xs),
Cons(
x,
Nil))
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)